Mechatronics Engineering
|
This Engineering has the accreditation of CACEI (Consejo de Acreditación de la Enseñanza de la Ingeniería, A. C.). |
|
This Engineering Program is accredited by the Engineering Accreditation Commission of the international organization; ABET (Accreditation Board for Engineering and Technology.) Retroactive to graduate students since October 2011; of the Norte campus (Huixquilucan).; |
Objetivos
The Mechatronics Engineering program, in accordance with its constituencies, has developed the following Educational Objectives for our program (that were developed originally by the faculty and was discussed with alumni and employers. Afterwards they were validated by the Engineering Advisory Committee). The Objectives are focused in complying with the mission, considering the training in several areas of Engineering for the Mechatronics Engineering Program such as, Mechanical, Electric and Electronics, Control, Software/Hardware and Communications. Mechatronics Engineering graduates are expected to attain the following educational objectives within a few years of graduation:
To be excellent problem-solvers in areas related to control, automation and mechatronics engineering, using their knowledge and creativity to improve productive systems such as those involved in manufacturing.
Design mechatronics, pneumatics, hydraulics, and other systems, using specialized design and simulation software in order to control and automate industrial processes.
Improve efficiency and quality of productive systems through the appropriate, computer- based control of mechanical and mechatronics systems.
Behave ethically and humanely as socially responsible and environmentally conscious professionals.
Student Outcomes
The student outcomes that are assessed in the mechatronic Engineering Program, that is what each student is expected to acquire and apply by the time of graduation are:
- An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- An ability to communicate effectively with a range of audiences
- An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- An ability to acquire and apply new knowledge as needed, using appropriate learning strategies
Materials mechanics
Mechanisms and Mechanic components design.
Electric machines and Electrical.
Digital and Analog Electronics.
Control, Automation and Robotics.
Within the Mechatronics Engineering program, students who wish to specialize and obtain a special certificate can attain it in different areas through elective subjects. The available areas for the 2010 plan are:
Manufacturing
Automotive Mechanics
Manufacturing and Quality Control
Energy
Logistics
For the 2016 plan the available areas are:
Automotive Mechanics
Manufacturing Systems
Industrial Automation
Manufacturing and Quality Control
Advance Elective Subjects
Curricular Model 2025
North CampusSouth Campus Mapa Curricular Enero 2021
Curricular Model 2016
Curricular Model 2010
Program: Mechatronics Engineering |
Number of new students |
Number of graduated students |
Number of Actual Students |
2019-2020 Period | 43 | 16 | 169 |
2018-2019 Period | 40 | 25 | 123 |
2017-2018 Period | 50 | 30 | 136 |
2016-2017 Period | 41 | 13 | 134 |
2015-2016 Period | 44 | 19 | 136 |
2014-2015 Period | 54 | 12 | 136 |